Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2306482, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109123

RESUMO

Inflammatory bowel disease (IBD) has become a globally prevalent chronic disease with no causal therapeutic options. Targeted drug delivery systems with selectivity for inflamed areas in the gastrointestinal tract promise to reduce severe drug-related side effects. By creating three distinct nanostructures (vesicles, spherical, and wormlike micelles) from the same amphiphilic block copolymer poly(butyl acrylate)-block-poly(ethylene oxide) (PBA-b-PEO), the effect of nanoparticle shape on human mucosal penetration is systematically identified. An Ussing chamber technique is established to perform the ex vivo experiments on human colonic biopsies, demonstrating that the shape of polymeric nanostructures represents a rarely addressed key to tissue selectivity required for efficient IBD treatment. Wormlike micelles specifically enter inflamed mucosa from patients with IBD, but no significant uptake is observed in healthy tissue. Spheres (≈25 nm) and vesicles (≈120 nm) enter either both normal and inflamed tissue types or do not penetrate any tissue. According to quantitative image analysis, the wormlike nanoparticles localize mainly within immune cells, facilitating specific targeting, which is crucial for further increasing the efficacy of IBD treatment. These findings therefore demonstrate the untapped potential of wormlike nanoparticles not only to selectively target the inflamed human mucosa, but also to target key pro-inflammatory cells.

2.
Sci Rep ; 13(1): 2681, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792686

RESUMO

The intestinal epithelial barrier, among other compartments such as the mucosal immune system, contributes to the maintenance of intestinal homeostasis. Therefore, any disturbance within the epithelial layer could lead to intestinal permeability and promote mucosal inflammation. Considering that disintegration of the intestinal epithelial barrier is a key element in the etiology of ulcerative colitis, further assessment of barrier integrity could contribute to a better understanding of the role of epithelial barrier defects in ulcerative colitis (UC), one major form of chronic inflammatory bowel disease. Herein, we employ fast, non-destructive, and label-free non-linear methods, namely coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), two-photon excited fluorescence (TPEF), and two-photon fluorescence lifetime imaging (2P-FLIM), to assess the morpho-chemical contributions leading to the dysfunction of the epithelial barrier. For the first time, the formation of epithelial barrier gaps was directly visualized, without sophisticated data analysis procedures, by the 3D analysis of the colonic mucosa from severely inflamed UC patients. The results were compared with histopathological and immunofluorescence images and validated using transmission electron microscopy (TEM) to indicate structural alterations of the apical junction complex as the underlying cause for the formation of the epithelial barrier gaps. Our findings suggest the potential advantage of non-linear multimodal imaging is to give precise, detailed, and direct visualization of the epithelial barrier in the gastrointestinal tract, which can be combined with a fiber probe for future endomicroscopy measurements during real-time in vivo imaging.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/patologia , Intestinos/patologia , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/patologia , Doenças Inflamatórias Intestinais/patologia , Colite/patologia
3.
Macromol Biosci ; 22(4): e2100482, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35068059

RESUMO

Inflammatory bowel disease (IBD) is characterized by increased levels of reactive oxygen species (ROS) in inflamed areas of the gastrointestinal tract and in circulating immune cells, providing novel opportunities for targeted drug delivery. In the recent experiments, oxidation-responsive polymeric nanostructures selectively degrade in the presence of H2 O2 . Based on these results, it is hypothesized that such degradation process can be triggered in a similar way by the incubation with stimulated monocytes isolated from patients with IBD. A first indication is given by a significant correlation between excessive ROS and degradation of micelles in monocytes isolated from healthy individuals after phorbol 12-myristate 13-acetate (PMA) stimulation. But even if the ROS-sensitive micelles are incubated with nonstimulated monocytes from patients with active IBD, a spontaneous degradation is observed in contrast to micelles incubated with monocytes from healthy donors. The findings indicate that the thioether-based micelles are indeed promising for selective drug release in the presence of activated immune cells.


Assuntos
Doenças Inflamatórias Intestinais , Micelas , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Monócitos/metabolismo , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo
4.
Biomacromolecules ; 21(4): 1393-1406, 2020 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-32084317

RESUMO

Block copolymer micelles have received increasing attention in the last decades, in particular for their appealing properties in nanomedicine. However, systematic investigations of the interaction between polymeric micelles and immune cells are still rare. Therefore, broader studies comparing the structural effects remain inevitable for a comprehensive understanding of the immune response and for the design of efficient, nonimmunogenic delivery systems. Here, we present novel block copolymer micelles with the same hydrophobic core, based on a copolymer of BA and VDM, and various hydrophilic shells ranging from common PEG derivatives to morpholine-based materials. The influence of these shells on innate immune responses was studied in detail. In addition, we investigated the impact of micelle stability by varying the cross-linking density in the micellar core. Surprisingly, whereas different shells had only a minor impact on immune response, micelles with reduced cross-linking density considerably enhanced the release of cytokines from isolated human monocytes. Moreover, the uptake of non-cross-linked micelles by monocytes was significantly higher as compared to cross-linked materials. Our study emphasizes the importance of the micellar stability on the interaction with the immune system, which is the key for any stealth properties in vivo. Polymers based on morpholines result in a similar low response as the PEG derivative and may represent an interesting alternative to the common PEGylation.


Assuntos
Micelas , Monócitos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunidade , Polietilenoglicóis , Polímeros
5.
Cells ; 9(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905600

RESUMO

Tissue-resident macrophages play critical roles in controlling homeostasis, tissue repair, and immunity. Inflammatory macrophages can sustain tissue damage and promote the development of fibrosis during infections and sterile tissue injury. The NLRP3 inflammasome and its effector cytokine IL-1ß have been identified as important mediators of fibrosis. Epirubicin, an anthracycline topoisomerase II inhibitor, has been reported to inhibit myeloid inflammatory cytokine production and to promote tissue tolerance following bacterial infection. We investigated the anti-inflammatory properties of epirubicin on the NLRP3 inflammasome and TLR4-mediated inflammation in PMA-primed THP-1 and in primary human peritoneal macrophages (PM). Low-dose epirubicin at non-cytotoxic doses downregulated NLRP3 inflammasome components and reduced the release of cleaved caspase-1, bioactive IL-1ß, and TNF-α following NLRP3 activation in a dose-dependent fashion. In addition, epirubicin attenuated inflammatory macrophage responses after TLR4 and TLR2 ligation. These anti-inflammatory effects were not mediated by the induction of autophagy or altered MAPK signaling, but as the result of a global transcriptional suppression of LPS-dependent genes. Epirubicin-treated macrophages displayed reduced acetylation of histone 3 lysine 9 (H3K9ac), suggesting anti-inflammatory epigenetic imprinting as one underlying mechanism.


Assuntos
Antraciclinas/farmacologia , Citocinas/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Acetilação , Antraciclinas/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/farmacologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Células Cultivadas , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Epirubicina/administração & dosagem , Epirubicina/farmacologia , Perfilação da Expressão Gênica , Histonas/metabolismo , Humanos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , NF-kappa B/metabolismo , Cultura Primária de Células , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...